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Some comments on Kondo lattices and the Mott transition
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Abstract. The so called exhaustion problem occurs when few electrons have to screen many spins in a
metal with magnetic impurities. A singlet Fermi liquid ground state is possible only if all impurities are
“isotropized” in such a way as to suppress their entropy. That takes a time τc and the corresponding
energy εc = ~/τc limits the Fermi liquid range. The present note explores that issue of time and energy
scales, and it concludes that εc is much smaller than the single impurity Kondo temperature. Similarly the
relevant energy scale is proportional to the number of electrons. Recent results on the Mott metal insulator
transition in infinite dimension are reconsidered in the light of these results: controversies in that respect
are shown to reduce to a simple physical question, with no firm answer as to now.

PACS. 75.20.Hr Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions
– 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena – 71.30.+h Metal insulator
transitions and other electronic transitions

The physics of one single channel spin 1/2 impurity anti-
ferromagnetically coupled to the conduction electrons in
a metal is by now well understood [1]. The corresponding
Kondo interaction Hamiltonian reads

H =
J

NL

∑
k,k′

∑
σ,σ′

Sisσσ′ c
∗
kσck′σ′ e

i(k−k′)Ri (1)

where NL is the number of sites while Si and Ri are the
impurity spin and position. The dimensionless coupling is
zo = ρJ/NL ≈ J/EF where EF is the Fermi energy and ρ
the density of states at Fermi level. The physics is trivial
in the strong coupling limit zo � 1: the impurity traps
an electron in order to build a singlet, the corresponding
site is closed to other electrons and a Fermi liquid ensues,
with one less electron and one less site (the only compli-
cation being a local interaction mediated by polarization
of that singlet). Standard Kondo effect corresponds to the
opposite weak coupling case: then logarithmic singulari-
ties act to increase the coupling z(T ) as the temperature
decreases. The coupling approaches 1 when T reaches a
characteristic Kondo temperature TK ≈ EF exp[−1/zo].
Thereafter z evolves towards infinity and a Fermi liquid
behaviour ensues again, with a temperature scale TK in-
stead of EF . The spin entropy Log2 is quenched on a tem-
perature scale TK .

The generalization to “Kondo alloys” with a finite con-
centration of magnetic impurities Nimp is non trivial. First
of all Kondo quenching competes with direct RKKY cou-
pling I between the impurity spins: that effect is already
present for two impurities, and it has been extensively

a e-mail: nozieres@ill.fr

studied [2]. The ground state is always a singlet Fermi
liquid, the only question for antiferromagnetic J being
whether it is driven by Kondo or RKKY. (The evolu-
tion is smooth except in restricted symmetric situations.)
When the concentration of impurities is large, another is-
sue arises, that of “exhaustion” [3]. It is best understood
in the strong coupling limit in which Kondo quenching
is a single site affair. Let us for a moment ignore direct
exchange coupling between impurities: only electrons can
quench the spins. If the number of electrons Nel is larger
than Nimp, singlet formation proceeds freely and the re-
maining carriers provide the low temperature Fermi liq-
uid, admixed with magnetically neutral sites – the Kondo
alloy resembles a single Kondo impurity. The physics is
completely different in the opposite limit Nel � Nimp:
then magnetic screening is necessarily collective. A Fermi
liquid singlet ground state is still possible, but not on a
one impurity basis. As an extreme situation, consider a
lattice gas with one spin per site, Nimp = NL: the ground
state is a mixture of Nel magnetically inert singlets and
(NL −Nel) “bachelor” spins, either up or down. The lat-
ter can hop around, exchanging with the singlets, thereby
behaving as effective fermions (with a reduced bandwidth
– see further). These new fermions have a hard core re-
pulsion since they refer to the impurity spin. A singlet
ground state means an isotropization of the spin struc-
ture of bachelors, with an energy scale that has nothing
to do with the bare exchange J .

Real Kondo alloys usually correspond to weak cou-
pling, TK � EF . The issue of exhaustion nevertheless
remains, as the only electrons eligible to provide Kondo
screening are those that lie within TK from the Fermi level:
at relevant temperatures ≈ TK the other ones are frozen
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by the exclusion principle and they cannot participate in
real precession processes. Exhaustion is thus measured by
the dimensionless ratio

p =
Nimp

Neff
=
Nimp

ρTK
(2)

p is the number of spins that a single electron has to
screen. In order to assess its importance we cannot ig-
nore the RKKY interaction I, due to spin polarization of
the conduction electrons via virtual excitation, which we
may write as

I =
∑
ij

J2

EF

1

(kFRij)
3 cos (2kFRij) SiSj

(Rij is the distance between impurities i and j). The ex-
change is second order in J , it decays as 1/R3 and it dis-
plays the usual Friedel oscillation. Note that the reduction
to a width TK around Fermi level does not apply to virtual
excitation, as seen in the fact that the summation over in-
termediate states extends over the whole bandwidth (I is

not a scaling quantity). Since 1/ (kFRij)
3 ≈ Nimp/ρEF ,

three regimes ensue:

(i) p� 1: there is no exhaustion problem, impurities un-
dergo an individual Kondo effect and the RKKY cou-
pling is irrelevant.

(ii) p � 1/z2
o, which implies I � TK . Then RKKY cou-

pling dominates, presumably leading to some frozen
magnetic order that depends on geometry, whether an-
tiferromagnetic, spin glass or other. That order kills
the Kondo effect, as argued long ago [4].

(iii) 1 � p � 1/z2
o, which is the interesting case. The

RKKY coupling should be minor – at least as long
as the energy scale remains TK . On the other hand
exhaustion is a problem.

In the present paper we explore that last case in more
detail. As a first approximation we ignore the RKKY in-
teraction altogether, and we study qualitatively how an
isotropic singlet state can be built up. We thereby ascer-
tain the characteristic energy scales of the problem. We
will see that the “coherence” temperature Tc below which
spin memory is quenched, allowing for Fermi liquid be-
haviour, is at most TK/p, very much reduced as compared
to TK . A quick analysis of the energy and entropy of the
system confirms that result. Such an idea that the charac-
teristic temperature is reduced in alloys is not new: it was
reached before in the framework of a periodic Anderson
model, first using a crude mean field slave boson technique
[5], then more recently using quantum Monte-Carlo sim-
ulation [6]. Such approximate methods, however, are not
fully convincing: it is hard to assess the confidence one can
have in slave bosons, and anyhow only a genuine Kondo
model can ensure that charge fluctuations have no effect.
We feel that a simple physical picture is useful.

We next look at the strong coupling limit. Then there
is no real range of concentration where RKKY interactions
are negligible. Since however that limit is rather unphys-
ical, we take it as a theoretical model to ignore RKKY
completely: we thereby pinpoint a “bare” Kondo effect in
a very simple language (when J is large the Kondo lat-
tice is equivalent to a hard core Hubbard model). Details
are slightly different as compared to the weak coupling
case, but the final conclusion is essentially unchanged: the
coherence temperature is very much reduced when few
electrons act to screen many impurities. (As a bonus of
that exact strong coupling solution, we show in the Ap-
pendix that the low temperature Fermi surface is the the
so called “large” one, that encompasses a number of states
(N +Nimp).) The standing question is then “what hap-
pens between TK and Tc”: we offer a few suggestions.

The problem of Kondo alloys is interesting per se: it is
supposed to control the physics of heavy fermions in rare
earths alloys. But it also enters indirectly in the issue of
Mott metal insulator transitions. In the canonical exam-
ple of a half filled Hubbard model, with local repulsion U
on each site, a charge gap develops past a critical value
Uc: two Mott-Hubbard sidebands correspond to localized
carriers with up or down spins. Usually the residual su-
perexchange interaction leads to antiferromagnetic order,
but one may envisage a situation in which a large frustra-
tion would mean a paramagnetic configuration. The latter
can be coherent, leading to an RVB like singlet ground
state with no entropy. It may also be incoherent, retain-
ing a magnetic entropy N Log 2 at T = 0. We are con-
cerned with the latter situation, whether it makes sense
or not (we take it as a working hypothesis, which may be
valid only at a small, but finite temperature1). The re-
sulting state has been extensively studied in the limit of
infinite dimensions [7]. In a recent review article [8] it is
argued that the transition is first order, metallic and insu-
lating solutions coexisting in a finite range of interaction
strength (Uc1, Uc2). Free carriers near the transition lie in
a resonant narrow band which disappears in the middle
of a large preformed Mott-Hubbard gap when U = Uc2.
When that resonant peak is present the metallic state may
be viewed as a Kondo alloy process, the free carriers act-
ing to screen the localized spins, thereby quenching their
magnetic entropy [9]. That model is extremely appealing,
as it explains naturally a number of striking features of
numerical results – yet it has been questioned for a num-
ber of reasons [10,11]. It is therefore instructive to look
at it from the vantage point of Kondo alloys. Near the
transition, when the free carriers are few, the exhaustion
problem is extreme: does it affect the energy balance that
controls the appearance of free carriers inside the gap?
We will show that the answer to that question indeed is
crucial in choosing between conflicting models. The issue
is by no means solved, but such an approach puts it in
physical terms.

1 Most of the existing theory is carried out for infinite di-
mension: it is not clear that the limits T → 0 and d→∞ are
interchangeable.
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1 Collective Kondo screening in the weak
coupling case

Assume that we perform real space renormalization un-
til a single cell contains one impurity only. In the spirit
of renormalization, each cell, Nimp in number, contains a
single state: we are left with an effective lattice gas with
Nimp sites. Each one of the Neff electrons hops from cell to
cell, with a characteristic time scale τh which corresponds
to a bandwidth εh ≈ h/τh. In order to estimate εh we re-
quire that the Fermi level density of states be preserved,
i.e. ρ ≈ Nimp/εh. Using (2) it follows that

εh ≈ pTK . (3)

Only a fraction 1/p of the sites is visited at any given
time, the duration of a visit being τh. During a visit, the
residual exchange with the host spin is TK

2. It follows
that the spin and its visitor precess around each other
with a Larmor frequency ωo ≈ TK/h. They rotate by an
angle

θ = ωoτh ≈
1

p
· (4)

It consequently takes at least p visits in order to achieve a
full turn.

A Fermi liquid ground state should be invariant upon
spin rotation: it is a coherent superposition of all possi-
ble spin orientations. Let τc be the time needed in order
to achieve such a full isotropization. The corresponding
energy Tc ≈ h/τc defines a characteristic coherence tem-
perature: Fermi liquid behaviour can only occur below Tc.
At higher temperatures T, one can make wave packets that
sweep in a time h/T : they “see” a snapshot of the spins
that is definitely anisotropic. The corresponding degen-
eracy is what builds the spin entropy S (T ). The central
issue is thus an estimate of τc, which in turn depends on
whether successive visits to a given cell are coherent or
not – put another way, does impurity precession resumes
with the same rotation vector or not? In the former case
it takes a time pτh to make a full turn – but since the
rotation axis is fixed, it is not fully clear that the result-
ing state is really isotropic. In the latter case, impurity
precession should instead be viewed as a Brownian mo-
tion on the sphere and it takes a time p2τh to make a full
turn. In either case one should remember that precession
is stopped most of the time, being active only for a frac-
tion of time 1/p. Without a detailed theory one cannot
really choose, but it is clear that the former choice yields
a lower bound for τc, i.e. an upper bound for Tc. That
bound is

Tc =
εh

p2
=
TK

p
=

ρT 2
K

Nimp
· (5)

2 It would be exactly that if the number of cells would be
Neff instead of Nimp: TK is by definition the band width for
which the dimensionless coupling z is ≈ 1. For logarithmic
scaling the difference is not much except if p is exponentially
large.

Well below Tc we expect a Fermi liquid with no magnetic
degrees of freedom, with an entropy S = γT . Well above,
the spins are essentially random, but possibly strongly cor-
related. The key issue is therefore the evolution of S (T ).
It is definitely NimpLog 2 above the single impurity Kondo
temperature TK : does it go to zero in one or two steps? In
the former case Tc is the only characteristic temperature
of the problem and the Sommerfeld constant is

γ ≈
Nimp

Tc
≈ ρ p2. (6)

In the latter case part of the magnetic entropy could disap-
pear due to spin correlations and γ would be accordingly
smaller.

Here again naive theories cannot decide. We neverthe-
less present a simple handwaving argument that pleads for
a single energy scale. The entropy scale is So = NimpLog 2.
In order to identify the energy scale Eo we note that
the exchange energy is TK for each occupied site – hence
Eo ≈ Neff TK . Standard thermodynamic relations usually
imply a temperature scale To ≈ Eo/So: we recover the
same scale TK/p found for the coherence energy Tc.

These arguments are by no means conclusive: they are
meant to stimulate further thought. For instance it is quite
possible that the actual coherence temperature Tc (mark-
ing the onset of Fermi liquid behaviour) is even smaller,
the precession by 2π around a given rotation axis be-
ing insufficient to achieve isotropy. The drop of entropy
should then begin at the scale TK/p suggested by ther-
modynamics, what happens in the intermediate range re-
maining rather mysterious. It is also possible – and even
likely – that RKKY interactions, while negligible above
TK , could become dominant around Tc: instead of being
due to precession against rare visitors, the isotropization
process would be due to direct interactions (to the extent
that a real RVB state with no long range correlations does
exist). To make life even more complicated, we may note
that independent binary RKKY interactions do not make
sense if many spins are coupled to few electrons: those in-
teractions are strongly correlated. Altogether, the problem
remains open, with many unclear facets.

2 The strong coupling limit

Since realistic Kondo alloys are complicated, it is instruc-
tive to look at a more artificial situation in which the
theory is much better controlled: many of the ideas ex-
pounded above will reappear in another guise. Such a limit
is that of an infinite J, much larger than the Fermi energy
EF . We assume an impurity on each of theNL lattice sites,
and we put N < NL electrons that hop with a bandwidth
D. The exhaustion parameter is p = NL/N . Each avail-
able electron is trapped into a singlet with some impurity:
the resulting energy – (3NJ/4) is frozen and it disap-
pears completely from the problem. Those singlet sites are
magnetically inert, magnetism being concentrated onto
the (NL −N) unscreened “bachelor” spins. We assume
that there is no exchange whatsoever between these ac-
tive spins: they can move only when they encounter a sin-
glet site, with which they exchange (the screening electron
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hops backwards from one site to the next). The overlap of
two singlet states being 1/2, the bandwidth associated to
these hops is D/2. Bachelor spins act as spin 1/2 fermions
(indeed they are simply holes in a completely filled singlet
lattice), but the new feature is that such fermions have a
hard core: one cannot destroy two electrons on a singlet
site that has only one! We thus have an exact isomorphism
between two problems:

(i) A Kondo lattice with NL spins, N electrons, band-
width D, exchange J =∞.

(ii) A Hubbard model with NL sites, (NL −N) elec-
trons, (i.e. N holes), bandwidth D/2, on site repulsion
U = ∞.

Such an equivalence was noticed long ago [13]: we em-
phasize it here as it supports the previous discussion.

Let us first extend our precession argument. The hop-
ping time is τh ≈ h/D, the precession Larmor frequency
is ωo ≈ J/h. During a visit the spin rotates by an angle
θ ≈ ωoτh ≈ J/D� 1: a single visit on a given site is thus
enough to achieve isotropy. But all sites must be visited:
that takes a time τc ≈ τhNL/N. The corresponding co-
herence temperature is Tc = h/τc ≈ D/p: we recover the
same reduction by a factor p. Note that Tc is proportional
to the concentration of free electrons. We arrive at the
same temperature scale comparing orders of magnitude
for the energy Eo and entropy So in the ground state. If
we exclude the frozen exchange energy, the remaining Eo
is due to singlet hopping, of order ND, while the entropy
scale is of order NL Log2. The characteristic temperature
over which So is quenched should be Eo/So: we recover
the same Tc.

Here we do have a reliable theory. The case of a nearly
filled lattice, (NL −N)� NL, is essentially trivial: bach-
elor spins are few and their hard core makes little differ-
ence. In zeroth order they behave as ideal free fermions
(the next order correction for a dilute Fermi gas is known,
but it does not matter here). There is no exhaustion con-
straint, and the problem is dull. (We may notice however
that the ground state Slater determinant allows an ex-
plicit calculation of all physical quantities, for instance
the one particle distribution function nk: this is done in
the Appendix where we show that the resulting Fermi sur-
face contains (NL +N) points, a modification of the usual
Luttinger theorem that is here proven analytically.) The
opposite limit N � NL implies extreme exhaustion. Then
the motion is that of N holes in a hard core Hubbard
model. While there is no exact analytical solution to the
problem due to spin disorder, everybody will agree that
the energy scale is ND, the band width being somewhat
reduced by the spin structure. That validates our preces-
sion argument.

3 Relevance to the Mott transition

We consider the standard one band Hubbard model on a
lattice with NL sites

H = − t c∗iσ cjσ + U ni↑ni↓. (7)

The band is half filled, N = NL. The physics is simple in
two limits:

(i) Strong coupling, U � t: the ground state is an insula-
tor with a large gap δ ≈ U . Localized spins are subject
to an Anderson superexchange J = 4t2/U , leading to
an antiferromagnetic structure. The magnetic energy
scale J is much smaller than δ: the insulating gap has
nothing to do with magnetism, which is a minor cor-
rection.

(ii) Weak coupling, U � t: the ground state is a paramag-
netic conducting Fermi liquid, except if the Fermi sur-
face is nested (as it is for nearest neighbour hopping in
a simple cubic lattice). In the latter case a spin density
wave instability develops, formally very similar to the
BCS instability (zone edge triplet particle hole pairs
condense instead of zone center singlet particle pairs).
The gap δ is due to Bragg scattering off the resulting
antiferromagnetic order: the insulating behaviour is a
direct consequence of the magnetic symmetry break-
ing, as shown by the fact that the Néel temperature
is ≈ δ.

One goes smoothly from one limit to the other as U
is varied, but the physics is very different in the two lim-
its. The same situation occurs in superconductors, where
pairing is an “atomic” property for strong attractions U
(Bose-Einstein condensation is then a marginal detail),
while δ is due to gauge symmetry breaking in the BCS
weak coupling case3.

Whether in strong or in weak coupling an insula-
tor seems to imply antiferromagnetism: the real issue is
whether a paramagnetic insulator can exist at zero tem-
perature. More precisely one can imagine two situations:

(i) A coherent non degenerate ground state in which lo-
calized spins form a singlet state, invariant under spin
rotation. That is easily achieved upon dimerization,
but one then breaks translational invariance. The issue
is whether one can achieve such a singlet state with-
out breaking any symmetry, and without infinite range
correlations: the answer is still a matter of debate4.

(ii) An incoherent state, with residual entropy N Log 2, in
which localized spins are random.

We are here concerned with the second possibility,
which has been supported recently by detailed calcula-
tions in the limit of infinite dimension [8] In that limit
correlations are strictly local, and the surrounding world
of a given site enters only through a single particle ef-
fective Lagrangian that is determined self consistently5.

3 In the electron-hole symmetric nested case the equivalence
is actually an identity, since one can change the sign of U per-
forming an electron-hole transformation on one spin only.

4 An equivalent question is whether a spin 1/2 lattice can
have a singlet ground state – and since spins 1/2 are isomor-
phous to hard core bosons, whether a Bose liquid can have a
normal ground state, which is neither superfluid (breakdown
of gauge invariance), nor cristalline (breakdown of translation
invariance). That question is open.

5 That effective Lagrangian is supposed to ignore the state
of the site considered: L↑ is the same whether a ↓ electron
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Fig. 1. The evolution of the one electron density of states ρ(ω)
as a function of the Hubbard repulsion U for an electron-hole
symmetric model at zero temperature, taken from reference [5].
Numbers refer to the value of U/D where D is the bandwidth.
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Fig. 2. The resonance width ∆ as function of the gap δ,
parametrized by the interaction strength U . Note that both
become fuzzy when ∆ increases.

We take these results as granted and we explore their
physical implications.

Let us first describe the salient results of Georges et al.
They mostly consider an electron-hole symmetric case in
which the density of states ρ (ω) is even with respect to
the Fermi level. They first study the ground state T = 0:
it is then easily shown that ρ (0) is constant, unaffected
by interactions. The evolution of ρ (ω) as the interaction
U is increased is shown in Figure 1. Starting from the
usual single band at small U , two Mott sidebands develop

is there or not. While all right in a metallic state in which the
memory time of a given site is finite, such an assumption is
not obvious in the insulating state in which the spin structure
is frozen. Then the relaxation time of the surrounding world,
presumably ≈ 1/d, must be compared to the free carrier energy
scale ∆: it is not clear that the limits ∆→ 0 and d→∞ can
be interchanged. That question deserves an answer, but it is
not central to our argument.

Uc1
Uc2

U

GG

''

Fig. 3. Multistability at zero temperature: between Uc1 and
Uc2 two solutions coexist for the gap δ and the resonance
width ∆, an insulating one (dashed curve) and a metallic one
(dotted curve).

progressively, while a narrow resonance appears near
Fermi level. Clearly the problem has two characteristic en-
ergies, the “gap” δ between the sidebands, and the width
∆ of the resonance. As long as the central peak exists,
these energies are not sharply defined: the central peak
has tails and Auger processes fill in the gap! But they
are better and better defined as ∆ → 0. At some critical
Uc2 the central peak disappears: beyond that a sharp gap
δ exists, as in a semiconductor, and the ground state is
insulating. Note that the weight (per crystal site) of the
central peak is

z ≈
ρ∆

N
≈
∆

D
(8)

where D is a typical bandwidth: the weight shrinks to
zero at the transition. It does it in the middle of a large
preformed gap: δ is of orderD at Uc2, as shown in Figure 2.
That particular point is one of the standing controversies:
we want to understand it better.

Because the insulating state has magnetic entropy, it
is favoured at finite temperatures. It follows that the two
states ∆ 6= 0 (metal) and ∆ = 0 (insulator) can coexist in
a finite range Uc1 < U < Uc2: the transition is first order.
The evolution of δ and ∆ as a function of U is sketched

in Figure 3, which clearly displays multistabilty. The cor-
responding phase diagram is shown in Figure 4, together
with the Maxwell plateau. More interesting is the evolu-
tion of the central peak ρ (ω) as a function of T , sketched
in Figure 5: the width does not vary much, but ρ (0) de-
creases. When T ≈ ∆ the peak has a vanishing weight
instead of broadening. That highly significant result must
also be understood.

The Lagrangian L describing retarded excursions into
the surrounding world may be represented by an effective
self energy σ (ω). The self consistency requirement implies
that σ (ω) ≈ D2G (ω), where G is the local full propagator
and D the bandwidth. σ (ω) may be mimicked assuming
hybridization of the particular site 0 under study with
a gas of fictitious drone fermions γασ, according to an
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Uc2Uc1
U

T

Fig. 4. Phase separation in the T , U plane. The dashed curve
is the Maxwell plateau.

T = 0

UU

ZZ

Fig. 5. Evolution of the central resonance peak in ρ(ω) as a
function of temperature.

effective Anderson impurity model

H = U

[
c∗o↑co↑ −

1

2

] [
c∗o↓co↓ −

1

2

]
+
∑
ασ

λα [c∗oσγασ + c.c.] +
∑
ασ

εαγ
∗
ασγασ. (9)

The resulting self energy is

σ (ω) =
∑
α

λ2
α

εα − ω
· (10)

The total weight of σ is

1

π

∫
dω Imσ =

∑
α

λ2
α. (11)

Since Imσ ≈ πD2ρ, it follows that the contribution of the
central peak to (11) is of order zD2 ≈ ∆D.

The level scheme of that problem is sketched on
Figure 6: site 0 has the usual 4 states and the spectrum of
σ reflects that of G, with two sidebands and a narrow cen-
tral peak. In the vicinity of Uc2 it is natural to focus on the
central states, namely the spin doublet no = 1 (equivalent

ZZ

no=2

,

ZZ

UU

drone fermionscentral site

no=1

no=0

Fig. 6. The level scheme of the equivalent Anderson impurity
model.

to a spin S = 1/2) and the resonance peak of σ (ω). This
is achieved via a transformation “à la Schrieffer-Wolff”,
slightly more complicated as one must eliminate both the
no = 0, 2 states and the Mott sidebands. The resulting
Hamiltonian necessarily has a Kondo-like structure

H =
∑
α,α′

γ∗ασγα′σ′ [Vαα′δσσ′ + Jαα′ Ssσσ′ ] . (12)

Drone fermions scatter off the two level system. The
scalar potential is identically zero if electron-hole sym-
metry holds (as known in usual Kondo physics). More
generally it probably fixes the position of the resonance
inside the gap. We ignore it altogether, focussing on the
symmetric case. Since a typical energy denominator is of
order D, the exchange coupling J is of order

Jαα′ ≈
λαλα′

D
· (13)

Near Uc2 we expect it to be intermediate, corresponding to
a Kondo temperature comparable to the band width ∆ of
the central peak. Indeed ∆ is much smaller than all other
energy scales: the shape of the central peak should be uni-
versal and the coupling can be neither weak nor strong.
In order to substantiate this handwaving argument, we ig-
nore the kinetic energy of the drone fermions and we cal-
culate the spacing of the singlet and triplet states formed
by S with one trapped fermion: that should provide TK .
If we find TK ≥ ∆ we justify a posteriori our starting
approximation. We set∑

α

λαγασ = Aησ (14)

where A is a normalization factor such that η has the usual
anticommutation rules

A2 =
∑
α

λ2
α. (15)
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Fig. 7. The T = 0 density of states when δ and ∆ are compa-
rable (the value ρ(0) is fixed).

Then the Kondo temperature is A2/D ≈ ∆ , as expected.
Note that this Kondo temperature is calculated in the
presence of all other impurities, hidden in the self consis-
tency condition for σ (ω), i.e. in the drone fermions.

Such a Kondo picture should capture all the low en-
ergy features of the Mott transition, as emphasized in [9].
We apply it to an energy balance argument. We start from
an insulating state with a Mott-Hubbard gap δ, and we
bring NL z states in the middle of the gap in order to build
the resonant free fermion peak where the Fermi level sits.
What is the cost in energy of such a process? If it is ener-
getically favourable the insulator will turn spontaneously
into a metal. If it is not, it may be that the insulating
state is a local minimum, leading to a first order transi-
tion. The hope is to make a phenomenological description
“à la Landau” of the Mott metal-insulator transition. Such
an energy balance has two parts:

(i) An obvious cost in kinetic energy N z δ, paid when oc-
cupied states are promoted from the lower Mott sub-
band to the resonant peak.

(ii) A gain in exchange energy at T = 0 due to the forma-
tion of singlets. Each screened impurity gains a Kondo
energy TK ≈ ∆, but we are in an extreme exhaustion
case: N spins are screened by Neff = N z electrons, a
much smaller number when z → 0.

The key issue is whether one gains ∆ once per spin
or once per electron. The preceding sections plead for the
latter – but here the fermions are constructs and the an-
swer is not clear: we thus explore the two possibilities in
succession.

a) The Kondo energy is gained for all spins – Since
z ≈ ∆/D the net energy cost is N [δ/δ∗ − 1]∆, where
δ∗ is a threshold value of order D. The balance becomes
favourable when δ = δ∗: the resonance peak appears in the
middle of a large preformed gap, in accordance with [8].

b) The Kondo energy is gained only once per electron
– The energy cost is then N z [δ −∆]: the resonance peak
disappears as soon as the gap opens. There is only one
energy scale ∆ in the problem and we recover the famil-
iar band crossing picture for the metal–insulator transi-
tion [11]. Because ρ (0) is fixed, there is still a peak at
Fermi level, but in a closing gap as sketched in Figure 7.
One expects no first order transition. Such a picture has

U > Uc2

U < Uc2

Z

E

Fig. 8. The evolution of the ground state energy as a function
of the resonance peak weight z for various values of U .

advocates: it came out for instance from a slave boson
treatment of the Hubbard model [12].

The two points of view are clearly contradictory, hence
a controversy which is not easily settled opposing numerics
to approximations. Here we provide the dilemma with a
simple physical meaning. Let us for a moment assume that
a) is the good choice. Such a Kondo picture has many
appealing features:

(i) It has a built in saturation mechanism that describes
the direct bifurcation at Uc2 the more states in the
central peak, the more they repel the Mott side-
bands, thereby increasing the gap δ. The gap is thus
an increasing function of z: the growth of the reso-
nance peak stops when δ = δ∗. The evolution of the
ground state energy as a function of z is shown in Fig-
ure 8, which resembles the usual Gutzwiller approxi-
mation [14]. We recover the usual Landau picture of a
phase transition.

(ii) It provides an obvious interpretation of the finite T
behaviour. While in the ground state each Kondo sin-
glet gains an energy ≈ ∆, that gain disappears above
the Kondo temperature. Then parallel and antiparal-
lel spin configurations are equally probable and the
net exchange energy vanishes. Only the cost in kinetic
energy survives and the balance is unfavourable. The
negative slope in Figure 8 changes sign, the weight z
going to zero.

(iii) The effect is enhanced by entropy. At a given tempera-
ture T the spins decouple when z � T/D: the free en-
ergy goes down by NTLog2. That drop is killed when
T ≈ zD, hence an initial slope of F (z) near T = 0
of order ND which adds to the kinetic energy contri-
bution. It follows that F (z) has a local minimum at
z = 0, as sketched in Figure 9, the transition is first
order.

All the results of [8] are thus natural consequences of
a single assumption, namely that the Kondo energy ∆ is
gained at each spin site.

Where do we stand now? If the resonant peak free
fermions were real particles, the discussion of the preced-
ing section would claim that the Kondo energy is gained
only once per carrier. In the author’s opinion that remains
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Fig. 9. The free energy at fixed T 6= 0 as a function of z.

a likely possibility. It should be admitted however that the
γασ are fictitious particles that mimick the excursion self
energy σ(ω). Moreover their properties are calculated self
consistently, so that they incorporate from the outset a
certain amount of interactions. One may envisage a situ-
ation where the resonance width ∆ would be already the
coherence energy Tc rather than the bare single impurity
Kondo temperature TK : then case (a) would hold. In such
a situation the bare single site TK would be of order D the
band width – indeed a natural choice in an intermediate
coupling situation where D, U and J are comparable. Ex-
haustion as described above would then reduce that large
TK to ∆ = zTK as found in [8]. In the end the issue is
whether the magnetic energy gain due to singlet formation
is ≈ z or ≈ z2: the only purpose of the present discussion
is to put the case in physical terms.

4 The strong magnetization limit

The Mott transition is usually discussed in non magne-
tized systems, N↑ = N↓. Since the magnetization M is a
good quantum number, one can study the transition for a
half filled band at any finite M , such that

N↓ = NL −N↑ 6= N↑.

That has been done recently [15]. Although not achievable
experimentally the limit of large magnetizations, N↓ �
N↑, is particularly interesting as the nature of the Mott
transition becomes very clear. Assume first that there is
a single ↓ spin: it may dissociate into an empty site (0)
and a doubly occupied site (2), with a cost in energy U .
That is equivalent to a local attraction −U between (0)
and (2). In 1 or 2 dimensions such an attraction always
produces a bound state: charge dissociation does not occur
at T = 0 and the system is an insulator. If d ≥ 3 the
bound state appears instead at a finite Uc: charges are
free below Uc and the system is a metal. The bound state
has a characteristic radius ξ which is easily calculated: the
interaction between bound pairs should have a small effect
if their distance is large, N↓ξ

d � 1 (we set the volume
equal to 1): the Mott transition then occurs at Uc.

When the density increases, the pairs begin overlap-
ping: their binding diminishes according to the old picture

of Mott (screening is one mechanism, but “saturation” of
the fermion distribution due to the exclusion principle is
another one [16]). That should make the metallic state
more favourable and as a result the threshold Uc(M) for
the Mott transition should grow as M is reduced from 1 to
0. In the limit M = 0 we recover the previous “collective”
picture of the transition. The evolution as a function of M
is continuous, the crossover corresponding to N↓ξ

d ≈ 1.

When pairs are dilute (i.e. a magnetization close to
saturation,N↓ � NL ), the metal–insulator transition cor-
responds to closing of the gap (when binding is destroyed):
in that limit, free carriers do not disappear in the middle
of a large preformed gap as they seem to do in the para-
magnetic case M = 0. It would then be most interesting
to extend the d = ∞ calculation to the magnetized case,
in order to see explicitly how the spectral density evolves
as a function of M . If it is found that the preformed gap
at Uc2 disappears as M grows, then the results of [8] will
gain additional support6.

The above discussion does not pay attention to mag-
netism: it does indeed occur for a simple cubic lattice and
it is interesting to consider its evolution. When down spins
are few, they form effective dilute bosons. The latter will
undergo Bose-Einstein condensation at T = 0, in the state
with minimum center of mass energy. Since the two body
problem is trivially solved, it easily verified that the low-
est state corresponds to a center of mass momentum at
zone corner rather than P = 0. Creating a bound boson
means flipping a spin: the Bose-Einstein order parameter
is thus the transverse magnetization. For M close to sat-
uration, the ground state is consequently a small canting
of the spins opposite on the two sublattices, as shown in
Figure 10: that is just the remnant of antiferromagnetism
as N↓ → 0. Note that for such a cubic lattice the ground
state is always antiferromagnetic, with a continuous evo-
lution between two limits:

(i) The dilute case where binding is an atomic property
that has nothing to do with magnetism. The gap is the
binding energy � TN .

(ii) The dense case N↑ = N↓ = NL/2, in which the gap
is due to Bragg scattering (there is only one energy
scale).

The situation is similar to that found in superconduc-
tors, in which the ground state goes continuously from

6 Such an extension has another more technical interest. One
of the methods used in [8] is based on “iterated perturbation
theory”, where local interactions are treated within second or-
der perturbation theory (IPT), and then calculated self con-
sistently within the iteration scheme. The justification for that
second order crude theory is that it interpolates between weak
and strong coupling. Such an interpolation, however, is due to
electron-hole symmetry and it disappears if N↑ 6= N↓: a calcu-
lation as a function of M should allow an assessment of IPT.
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Fig. 10. The canted antiferromagnetic spin configuration for
large net magnetization M , equivalent to Bose-Einstein con-
densation of triplet pairs.

a Bose-Einstein condensation of preformed pairs to the
BCS state7.

5 Conclusion

In this brief note we tried to throw a fresh look at two
problems, both of which have been intensively studied in
the past:

(i) How can a few electrons screen many magnetic impu-
rities, the so called “exhaustion problem” in Kondo
lattices? We claim that the characteristic tempera-
ture scale Tc is much smaller than the single impu-
rity Kondo temperature. The standing issue is whether
there are one or two characteristic temperatures in the
evolution of the entropy S(T ): we suspect there is only
one, but that is only a guess.

(ii) Can the physics of Kondo lattices shed light on the
Mott metal-insulator transition in half filled Hubbard
lattices? Usually such a transition is accompanied by
antiferromagnetic order, and the two effects are inter-
mingled: where is the hen and where is the egg? Recent
work in infinite dimension [8] has focussed on possible
paramagnetic insulators, in which localized spins are
incoherent and retain magnetic entropy at zero tem-
perature. The prediction is that the transition is first
order, free carriers appearing as a narrow resonance
in the middle of a large preformed gap. We view that
prediction as resulting from a Kondo quenching of the
localized spins: the claim of [8] would then be either
that exhaustion does not matter, or that the bare TK .
is actually the band width.

If true, such a statement deserves a detailed justifica-
tion – the more so as different experts have different views.
At that stage qualitative arguments are of no avail: only
playing with explicit calculations in different contexts can
yield a convincing answer. Two such calculations are par-
ticularly desirable:

(i) The exhaustion issue is neat and clean in the real
Kondo lattice, in which carriers are true ones instead

7 Indeed the two problems can be mapped on each other
performing an electron hole transformation on the ↑ spin
only. The interaction U goes to −U and the magnetized re-
pulsive system with N↓ = NL − N↑ goes into an attractive
gas N↑ = N↓.

of constructs. Can one study the d = ∞ limit of a
Kondo lattice with one spin per site and a variable
number of electrons, using the same approach as for
the Hubbard model (in a first approximation one can
choose J =∞)? Can one compare the lattice problem
with a single impurity? That should straighten out the
exhaustion issue without any havoc on the definition
of fermions.

(ii) Returning to the Hubbard model, can one apply the
d =∞ calculation to the evolution of the Mott transi-
tion as a function of the magnetization M? The results
can be checked against the known limit of saturation;
moreover the presence of an additional parameter al-
lows for a good check of the computational procedures.

Only experts can carry that program: this conclusion
is a standing order!

The author has greatly enjoyed many stimulating discussions
with A. Georges, F. Gebhard, G. Kotliar and D. Logan.

Appendix

A standing issue has been the Fermi surface of a Kondo
lattice, with a spin 1/2 on each of the NL sites and with
N electrons (the spins must be regularly spaced in order
to preserve translational invariance and to have a well de-
fined Fermi surface). Is the Fermi surface the “small” one
encompassing N states, or the “large” one encompassing
(NL + N) states? If the spins 1/2 are made up from an
underlying Anderson lattice with local f -orbitals, continu-
ity with the perturbative limit strongly suggests the latter
choice of a “large” Fermi surface. Indeed that result has
been established variationnally [17]. But a direct proof
within the s-d language would be nice. The J = ∞ limit
does provide such a proof in the limit of a nearly filled
band, (NL − N) � NL. That limit is complementary to
the small J characteristic of Anderson hybridization. We
sketch the argument which, although not general, is en-
lightening.

The p = (NL −N) bachelor spins act as free fermions
with a bandwidth half that of the original ones. The cor-
responding ground state is characterized by the positions
im, jn of the ↑ and ↓ holes, respectively p↑ and p↓ in num-
ber. It may be written as [13]

| Ψo 〉 = φ (αm, βn) cαm↑ cβn↓ | sing〉 (A.1)

where |sing〉denotes the state with NL electrons and a
singlet at each site. If p is small the hard core repulsion
between holes is irrelevant and φ is just a Slater deter-
minant. One may then calculate the one particle density
matrix explicitly,

nij,σ = 〈Ψo | c
∗
iσ cjσ | Ψo 〉. (A.2)

The Fourier transform of nij,σ yields the distribution nkσ .
If there is no hole, we find at once nij,σ = 1/2δij, as be-
fits a singlet state where ↑ and ↓ are equally populated.
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Fig. 11. The distribution nkσ of real fermions for p bachelor
spins all aligned σ =↑.

Assume next that all the holes are ↑: the Slater determi-
nant is the exact ground state. Equation (A.2) becomes

nij,σ = φ∗ (αm) φ (α′m) 〈 sing | c∗αm↑c
∗
iσ cjσcα′m↑ | sing 〉.

(A.3)

Consider first the “spectator” spins σ =↓: in order to re-
turn to the singlet state the (α) and (α′) sets must be
identical, i must be equal to j and it should not belong
to the set (α) (a singlet has only one electron). It follows
that

nij,↓ =
1

2
δij

[
1−

p

NL

]
· (A.4)

When σ =↑ two contributions emerge:

(i) Either i does not belong to (α) while j does not belong
to (α′): then (α) = (α′) and i = j. That part is just
the contribution we had for σ =↓.

(ii) Or (α) = (γ, j) and (α′) = (γ, i) where (γ) does con-
tain neither i nor j and i 6= j. The corresponding con-
tribution is

−
1

2

∑
γ 6=i,j

φ∗ (γ, j) φ (γ, i) [1− δij ] (A.5)

(the minus sign comes from anticommuting operators).
The δij term cancels the p in the bracket of (A.4) and
the final result for nk↑ is just the usual Fermi step
function. These results are summarized in Figure 11
for a 1d system for which kF↑ = π [1− p/NL]. Note
that the total number of real ↑ and ↓ fermions are the
same

N↑ = N↓ = NL
1

2

[
1−

p

NL

]
as it should (real fermions sit on the singlets).

The situation is more complicated when p↑ and p↓ are
both 6= 0. Then the hard core repulsion between ↑ and

VV =

2
1

nkVV

SS

k

VV =

Fig. 12. A sketch of the distribution nkσ of real fermions when
bachelor spins have different spins, with densities p ↑ and p ↓.

↓ holes cannot be ignored (if it were, nkσ would become
negative). But we know that dilute holes are well repre-
sented by a product of Slater determinants, appropriately
normalized by the hard core (the normalization constant
is ≈

[
1− p↑p↓/N2

L

]
). The Fermi levels (for 1d) are

kFσ = π

[
1−

pσ

NL

]
(A.6)

while the plateaux are to first order

nkσ =
1

2

[
1−

p−σ

NL

]
· (A.7)

We expect the distribution shown in Figure 12, which
roughly goes from 1/2 to 0. The number of true fermions
for ↑ and ↓ spins is equal to 1/2 [1− p/NL], as expected
for singlets (to first order: normalization makes for the sec-
ond order term). The number of k values inside the Fermi
surface is

NL [2− p↑ − p↓] = NL +N. (A.8)

As expected we find the large Fermi surface.
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